A SVM Regression Based Approach to Filling in Missing Values
نویسندگان
چکیده
In KDD procedure, to fill in missing data typically requires a very large investment of time and energy often 80% to 90% of a data analysis project is spent in making the data reliable enough so that the results can be trustful. In this paper, we propose a SVM regression based algorithm for filling in missing data, i.e. set the decision attribute (output attribute) as the condition attribute (input attribute) and the condition attribute as the decision attribute, then use SVM regression to predict the condition attribute values. SARS data set experimental results show that SVM regression method has the highest precision. The method with which the value of the example that has the minimum distance to the example with missing value will be taken to fill in the missing values takes the second place, and the mean and median methods have lower precision.
منابع مشابه
A BAYESIAN APPROACH TO COMPUTING MISSING REGRESSOR VALUES
In this article, Lindley's measure of average information is used to measure the information contained in incomplete observations on the vector of unknown regression coefficients [9]. This measure of information may be used to compute the missing regressor values.
متن کاملMultilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values
This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized te...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملAnalysis of Complex System Development Based on Fuzzy Cognitive Mapping
This article represents one of the contemporary trends in the application of the latest methods of classification in business, where intense competition and the desire to expand drive this science to far-reaching prospects using the discusses months and the most recent classification and forecasting algorithms such as SVM, FFM, C4.5, which are used to build better business decision support mode...
متن کاملVideo Subject Inpainting: A Posture-Based Method
Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...
متن کامل